חATIIBIA UTIVERSITY
OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE HONOURS	
QUALIFICATION CODE: 08BOSH	LEVEL: 8
COURSE CODE: BBC811S	COURSE NAME: BIOINORGANIC AND BIOPHYSICAL CHEMISTRY
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS
MODERATOR:	DR. LIKIUS DANIEL

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions. |
| 2. Write clearly and neatly. |
| 3. Number the answers clearly |
| 4. All written work must be done in blue or black ink and sketches can |
| be done in pencil |
| 5. No books, notes and other additional aids are allowed |

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page, list of useful constants, Periodic Table)

QUESTION 1:

Give a brief account for the following techniques used to study metals in biology:
a) Electron Paramagnetic Resonance (EPR) Spectroscopy.
b) NMR spectroscopy.
c) X-ray Diffraction

QUESTION 2:
a) Why is chelation important in medicine?
b) Why are corrins and pophyrins regarded as an important class of natural chelator molecules?

QUESTION 3:

a) Which of the 20 amino acids are potential metal ligands?
b) Which of the low molecular weight inorganic anions bind to Fe^{3+} in proteins?
c) Which metals are inserted into the tetrapyrrole nucleus of corrins and porphyrins to form vitamin B_{12} and other cobalamine cofactors, haem, chlorophyll and coenzyme F_{430} respectively?

QUESTION 4:

Describe the function and variety of siderophores.

SECTION B:

QUESTION 1:

1.1) Nicotine adenine dinucleotide (NAD) is a cellular redox reagent that is involved in redox chemistry throughout respiratory system. The reduced form of NAD is NADH and oxidised form is $N A D^{+}$. An electrochemical cell is constructed using a half-cell for which the reduction is given:

$$
\mathrm{NAD}^{+}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{NADH} \quad E^{0}=-0.105 \mathrm{~V}
$$

which combined with the half-cells for which the reduction reaction is given by:

$$
\begin{array}{ll}
\text { a) } \mathrm{CO}_{2}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{HCOO}^{-} & E^{0}=-0.105 \mathrm{~V} \\
\text { b) } \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} & E^{0}=0.69 \mathrm{~V}
\end{array}
$$

Write the overall reaction for the cells in the direction of spontaneous change. Is the NAD reduced or oxidised in spontaneous reactions?
1.2) You are given the following reduction reactions and $E^{O^{\prime}}$ values at $\mathrm{pH}=7$.
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\mathrm{O}^{\prime}}=-0.581 \mathrm{~V}$
$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq}) \quad \mathrm{E}^{\mathrm{o}^{\prime}}=-0.197 \mathrm{~V}$
Where E^{0} indicates the biological state. Calculate $E^{0^{\prime}}$ for the half-cell reaction:
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (I)

QUESTION 2:

The normal boiling temperature of benzene is 353.24 K , vapor pressure of liquid benzene is $1.00 \times 10^{4} \mathrm{~Pa}$ at $20^{\circ} \mathrm{C}$. The enthalpy of fusion is $9.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and vapor pressure of solid benzene is 88.0 Pa at $-44.3^{\circ} \mathrm{C}$. Calculate the following:
a) $\Delta \mathrm{H}_{\mathrm{m}}$ vap
b) ΔS_{m} vap
(3)
c) Tripple point Temperature and Pressure

QUESTION 3:

a) In the cell, typical concentration of ATP, ADP and inorganic phosphate are $\mathrm{C}_{\text {ATP }}=1850 \mathrm{uM}$, $C_{A D P}=138 \mathrm{uM}$ and $\mathrm{C}_{P}=1.00 \mathrm{mM}$. Calculate the Gibbs energy of hydrolysis in the cellular environment, assuming $\mathrm{pH}=7$ and $\mathrm{T}=310 \mathrm{~K}$.
b) The distributions of sodium and potassium ions inside and outside the cell membrane are $c_{\text {out }}^{N a+}=1.4 \times 10^{-1} \mathrm{M}, c_{\text {out }}^{K+}=5.0 \times 10^{-3} \mathrm{M}, c_{\text {in }}^{N a+}=1.00 \times 10^{-2} \mathrm{M}$ and $c_{\text {in }}^{K+}=1.00 \times 10^{-1} \mathrm{M}$.

Calculate the total free energy change involved in transporting 3 mol of sodium ion out of the cell and 2 mol of potassium into cell at $\mathrm{T}=310 \mathrm{~K}$. Assume a potential difference of 0.070 V .

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Faradays constant $=96,485 \mathrm{C} / \mathrm{mol}$

Avogadro's Number, $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

							Gd	Tb					

Lanthanides:
Actinides:

